STRAIN GAUGE BRIDGE CIRCUIT ## STRAIN GALIGE BRIDGE CIRCUIT | STRAIN GAUGE BRID | OGE CIRCUIT | Connection diagram varies according to strainmeter type. | | | |---|---|--|--|--| | Measuring mode | Bridge circuit | Wiring cor
Switching Box | nnection to
Bridge Box | Bridge Output | | Quarter bridge (with 2-wire) R ₁ ——————————————————————————————————— | R ₁ e e | R ₁ R ₂ R ₃ R ₄ R ₅ R ₇ R ₈ R ₁ | R ₁ R ₂ R ₃ R ₄ R ₄ R ₅ R ₇ | E : Excitation voltage e : Output voltage ⊿e : Output voltage due to strain e ₀ : Output voltage before strain generation R ₀ : Resistance change due to generation ⊿R : Resistance change due to strain | | Quarter bridge with 3-wire Thermal output of leadwire is cancelled. R ₁ | R ₁ R e | R ₁ R ₁ R ₂ R ₃ R ₄ R ₅ R ₇ R ₁ | R ₁ R ₁ R ₂ R ₃ R ₄ R ₄ R ₅ R ₆ R ₇ | ε : strain K: Gauge Factor of strain gauge $e = e_0 + \triangle e$ $R_1 = R_0 + \triangle R$ $R = R_0$ $\triangle e = \frac{E}{4} \text{ K} \varepsilon$ | | Quarter bridge 3-wire with two gauges connected in series in one arm, eliminating bending strain R ₁ R ₂ | R ₁ R ₂ e e | R ₂ R ₁ | R ₁ R ₂ strain gauge 60Ω each | $R_1 = R_0 + \Delta R$ $R_2 = R_0 + \Delta R$ $R = 2R_0$ $\Delta e = \frac{E}{4} K \epsilon$ | | Quarter bridge with four gauges connected in series and paralleled in one arm | R ₁ R ₂ R ₄ e e R R ₃ R | R ₂ R ₁ R ₃ R ₄ R ₃ R ₃ R ₃ R ₃ R ₄ R ₃ R ₃ R ₃ R ₃ R ₄ R ₃ R ₃ R ₃ R ₄ R ₃ R ₃ R ₃ R ₄ R ₃ R ₃ R ₃ R ₃ R ₄ ₄ R ₅ R ₄ R ₅ | R ₁ R ₂ R ₂ R ₃ R ₄ R ₄ R ₃ R ₄ R ₄ R ₄ R ₅ R ₄ R ₄ R ₅ R ₆ | $R_1 = R_2 = R_3 = R_4 =$ $R_0 + \triangle R$ $R = R_0$ $\triangle e = \frac{E}{4} \cdot K \varepsilon$ | | Half bridge with 1-active and 1-dummy gauge R ₁ R ₂ | | | | $R_1 = R_0 + \Delta R$ $R_2 = R_0 = R$ $\Delta e = \frac{E}{4} K \epsilon$ | | Half bridge with two active gauges R_1 R_2 | R ₁ R ₂ e | R ₂ R ₁ | R ₁ R ₂ | $R_1 = R_0 + \Delta R$ $R_2 = R_0 - \nu \Delta R$ $\Delta e = \frac{E(1+\nu)}{4} \cdot K\varepsilon$ $\nu : Poisson's ratio$ | | Half bridge with 2 active gauges : Bending strain | | Terminal code | ■short-circuited | $R_1 = R_0 + \Delta R$ $R_2 = R_0 - \Delta R$ $R = R_0$ $\Delta e = \frac{E}{2} K \epsilon$ | Output voltage due to strain is based on the condition that output voltage before strain generation (e_0) is zero. ## STRAIN GAUGE BRIDGE CIRCUIT Connection diagram varies according to strainmeter type. | Measuring mode | Bridge circuit | | nnection to Bridge Box | Bridge Output | |---|---------------------------------|---|--|--| | Half bridge common dummy R ₂ is used for two or more channels as a common dummy active R ₁ dummy R ₂ | R ₁ R ₂ e | R ₂ R ₁ R ₁ R ₂ R ₂ R ₃ R ₄ R ₂ R ₂ R ₃ R ₃ R ₃ R ₃ R ₄ R ₅ R ₄ R ₅ | Available only by
switching box | $R_1 = R_0 + \Delta R$ $R_2 = R_0 = R$ $\Delta e = \frac{E}{4} K \varepsilon$ | | Opposite arm Half bridge with 2 active gauges | R ₁ R ₂ e | Available only by bridge box
Applicable type
SB-120B
SB-350B
SB-128A
SB-123A
SB-353A | R1 R2 R2 R2 R2 R3 | $R_1 = R_0 + \Delta R$ $R_2 = R_0 + \Delta R$ $R = R_0$ $\Delta e = \frac{E}{2} K \varepsilon$ | | Opposite arm Half bridge with 3-wire 2 active gauges R ₁ R ₂ | R ₁ R ₂ e | Available only by bridge box
Applicable type
SB-120B
SB-350B
SB-128A
SB-123A
SB-353A | R ₁ R ₂ R ₂ R ₂ R ₂ R ₂ R ₂ R ₃ R ₄ R ₅ | $R_1 = R_0 + \Delta R$ $R_2 = R_0 + \Delta R$ $R = R_0$ $\Delta e = \frac{E}{2} K \epsilon$ | | Full bridge with 4 active gauges: Uniaxial strain | R_1 R_2 R_3 R_4 R_3 | R ₃ R ₄ R ₁ R ₂ R ₁ S S S S S S S S S S S S S S S S S S S | R ₄ R ₃ R ₁ R ₂ | $R_1 = R_3 = R_0 + \Delta R$ $R_2 = R_4 = R_0 - v \cdot \Delta R$ $\Delta e = \frac{E(1+v)}{2} \cdot K\varepsilon$ $v : Poisson's ratio$ | | Full bridge with 4 active gauges: Bending strain R ₂ R ₁ | | | | $R_1 = R_3 = R_0 + \Delta R$ $R_2 = R_4 = R_0 - \Delta R$ $\Delta e = EK\varepsilon$ | | Full bridge with 4 active gauges: Torque | | | | $R_1 = R_3 = R_0 + \Delta R$ $R_2 = R_4 = R_0 - \Delta R$ $\Delta e = EK\varepsilon$ | | Full bridge with 2 active gauges and 2 dummy gauges 2 active R ₃ 2 dummy R ₂ R ₄ | | | | $R_1 = R_3 = R_0 + \Delta R$ $R_2 = R_4 = R$ $R = R_0$ $\Delta e = \frac{E}{2} K \varepsilon$ | Output voltage due to strain is based on the condition that output voltage before strain generation (e_0) is zero.